智慧城市建设是通过完善城市通信技术布局,以分析、整合城市运行核心系统的关键信息。从而使城市能对包括民生、环保、公共安全、城市服务、工商业等需求做出智能响应的社会工程。智慧城市管理是新一代信息技术支撑、知识社会创新2.0环境下的城市管理新模式,通过新一代信息技术支撑实现全面透彻感知、宽带泛在互联、智能融合应用,推动以用户创新、开放创新、大众创新、协同创新为特征的以人为本的可持续创新。
主要研究成员:王家远、邹小伟、牛永宁、宋博通、袁丽丽、范成、李政道
研究子方向:
基于BIM与GIS技术集成的建设项目智慧管理研究
跨区域建筑废弃物的精准预测、环境影响与资源化利用潜力研究
基于大数据挖掘与驱动的建筑节能研究
建筑系统能效诊断;数据挖掘;大数据分析
建筑工业化、智能建造及智能建筑运维
建筑废弃物资源化技术及智能管理
房地产经济及金融方面的研究
主要科研项目:
1. 公共建筑实际能耗与预期目标差异的形成机理与改进策略研究:考虑能耗信息的完整性及能耗相关者的相互影响(国家自然科学基金面上项目)王家远
2. 深圳市拆除废弃物最佳处理处置技术及其优化方案研究(深圳市科技基础研究项目)王家远
3. 基础设施项目风险的动态管理方法:考虑利益相关者的风险态度和风险相互影响(国家自然科学基金面上项目)王家远
4. 深圳市建筑废弃物综合利用战略研究(深圳市建设科技项目)王家远
5. 浦东虹桥两场信息系统整合过程的风险分析与研究(上海市科委科研计划项目)王家远
6. 大数据驱动的中央空调系统多维度运行规律识别及能效诊断方法研究(国家自然科学基金青年科学基金项目)范成
7. 基于数据挖掘技术的建筑运行大数据分析方法及其在建筑能源管理中的应用研究(广东省自然科学基金项目)范成
8. 大数据驱动的公共建筑智能化能源管理理论及优化方法研究(广东省哲学社会科学规划项目)范成
9. 大数据环境下深圳市公共建筑智慧节能管理策略研究(深圳市哲学社会科学规划项目)范成
10. 基于数据挖掘技术的智能化建筑节能分析方法研究(深圳市高端人才科研启动项目)范成
11.不完备数据下融合多范式机器学习的中央空调系统智能故障诊断方法(国家自然科学基金委员会)范成
12.多范式人工智能驱动的中央空调系统通用性能效诊断技术(广东省基础与应用基础研究基金委员会)范成
13.不完备决策环境下的公共建筑智慧能效管理策略(广东省哲学社会科学规划专项小组)范成
14.面向公共建筑群体智能衍生的数据共享及通用性能效诊断方法(深圳市科技创新委员会)范成
15. 装配式建筑项目风险动态测度及智能决策:基于复杂适应系统视角的研究(国家自然科学基金项目)李政道
16. 装配式建筑项目风险识别与分担机制:基于利益相关者视角下的研究(国家教育部人文社科项目)李政道
17. 多主体视角下的装配式建筑供应链跨组织协同管理机制研究(广东省自科基金项目)李政道
18.面向智能建造的装配式建筑精益质量控制关键技术(广东省基础与应用基础研究基金委员会)李政道
19.RFID与云计算集成驱动的装配式建筑BIM管控平台关键技术研发(广东省教育厅)李政道
20.复杂系统视角下的装配式建筑项目智能化管理关键技术及管理理论研究(广东省基础与应用基础研究基金委员会)李政道
21.BIM技术驱动的装配式建筑精益建造与运营集成管理机制及关键技术研究(国家自然科学基金委)李政道
代表学术成果:
1. Jiayuan Wang,Huanyu Wu,Vivian W.Y.Tam,JianZuo(2019)."Considering life-cycle environmental impacts and society'swillingness for optimizing construction and demolition waste management fee: Anempirical study of China.", Journal of Cleaner Production, 206: 1004-1014
2. Jiayuan Wang,Huanyu Wu,Huabo Duan,GeorgeZillante,Jian Zuo Hongping Yuan(2018)." Combining life cycle assessmentand Building Information Modelling to account for carbon emission of buildingdemolition waste: A case study.", Journal of Cleaner Production, 172:3154-3166
3. Jiayuan Wang,Patrick X.W.Zou,Penny P.Li(2016)." Critical factors and paths influencing construction workers’safety risk tolerances.", Accident Analysis and Prevention, 93:267–279
4. Jiayuan Wang,Hongping Yuan(2016)."SystemDynamics Approach for Investigating the Risk Effects on Schedule Delay inInfrastructure Projects.", Journal of Management in Engineering,10.1061/(ASCE)ME.1943-5479.0000472
5. Jiayuan Wang,Zhengdao Li,Vivian W.Y. Tam(2015)."Identifying best design strategies forconstruction waste minimization.",Journal of Cleaner Production,2015,92:237-247
6. Jiayuan Wang,Zhengdao Li,Vivian W.Y.Tam(2014)."Critical factors in effective construction waste minimizationat the design stage: A Shenzhen case study, China.", Resources,Conservation and Recycling,82, 1-7.
7. Jiayuan Wang,Hongping Yuan(2011)."Majorcost-overrun risks in construction projects in China." ,Int. J. ProjectOrganisation and Management, Vol. 3, Nos. 3/4,227-242.
8. Cheng Fan, Fu Xiao, Mengjie Song, Jiayuan Wang.A graph mining-based methodology for discovering and visualizing high-levelknowledge for building energy management. Applied Energy. 2019, 251: 113395.
9. Cheng Fan, Yongjun Sun, Yang Zhao, Mengjie Song,Jiayuan Wang. Deep learning-based feature engineering methods for improvedbuilding energy prediction. Applied Energy. 2019, 240: 35-45.
10. Cheng Fan, Jiayuan Wang, Wenjie Gang*, Shenghan Li. Assessment ofdeep recurrent neural network-based strategies for short-term building energypredictions. Applied Energy. 2019, 236: 700-710.
11. Cheng Fan, Fu Xiao, Chengchu Yan, Chengliang Liu, Zhengdao Li,Jiayuan Wang. A novel methodology to explain and evaluate data-driven buildingenergy performance models based on interpretable machine learning. AppliedEnergy. 2019, 235: 1551-60.
12. Cheng Fan, Yongjun Sun*, Kui Shan, Fu Xiao, Jiayuan Wang.Discovering gradual patterns in building operations for improving buildingenergy efficiency. Applied Energy. 2018, 224: 116-123.
13.Cheng Fan, Meiling Chen, Rui Tang*, Jiayuan Wang.A review on data preprocessing techniques towards efficient and reliable knowledge discovery from building operational data.Frontiers in Energy Research.2021,9.
14.Cheng Fan, Xueqing Li, Yang Zhao*, Jiayuan Wang.Quantitative assessments on advanced data synthesis strategies for enhancing imbalanced AHU fault diagnosis performance.Energy and Buildings.2021,252.
15.Cheng Fan, Meiling Chen, Rui Tang*, Jiayuan Wang.A novel deep generative modeling-based data augmentation strategy for improving short-term building energy predictions.Building Simulation.2021,15.
16.Cheng Fan, Weilin He, Yichen Liu, Peng Xue*, Yangping Zhao.A novel image-based transfer learning framework for cross-domain HVAC fault diagnosis: From multi-source data integration to knowledge sharing strategies.Energy and Buildings.2022,262.
17.Cheng Fan, Yutian Lei, Yongjun Sun*, Marco Savino Piscitelli, Roberto Chiosa, Alfonso Capozzoli.Data-centric or algorithm centric: Exploiting the performance of transfer learning for improving building energy predictions in data-scarce context.Energy.2022.
18.Cheng Fan, Weilin He, Longhui Liao*.Real-time machine learning-based recognition of human thermal comfort-related activities using inertial measurement unit data.Energy and Buildings.2023,294.
19.Cheng Fan, Yiwen Lin, Marco Savino Piscitelli, Roberto Chiosa, Huilong Wang*, Alfonso Capozzoli, Yuanyuan Ma.Leveraging graph convolutional networks for semi-supervised fault diagnosis of HVAC systems in data-scarce contexts. Building Simulation.2023,16.
20.Cheng Fan, Yutian Lei, Yongjun Sun*, Like Mo.Novel transformer-based self-supervised learning methods for improved HVAC fault diagnosis performance with limited labeled data.Energy.2023,278.
21. Clyde Zhengdao Li, Geoffrey Qiping Shen, Xiaoxiao Xu, Fan Xue,Lucila Sommer, Lizi Luo. Schedule Risk Modelling in Prefabrication HousingProduction. Journal of Cleaner Production. 2017, 153: 692-706(SCI JCR一区)
22. Clyde Zhengdao Li, Ray Y. Zhong, Fan Xue, Gangyan Xu, Ke Chen,George Guoquan Huang, Geoffrey Qiping Shen, Integrating RFID and BIMtechnologies for mitigating risks and improving schedule performance ofprefabricated house construction. Journal of Cleaner Production. 2017,165:1048-1062 (SCI JCR一区)
23. Zhengdao Li, Fan Xue, Geoffrey Qiping Shen. (2015). Current housingsituation and the need for prefabrication housing production in Hong Kong.COBRA 2015. Sydney. RICS.
24.Lizi Luo, Shiying Hu, Ke Chen, Yunlin Liu, Clyde Zhengdao Li.Exploring safety vulnerability in prefabricated construction and mitigation effects of Internet of Things.IEEE Transactions on Engineering Management.2024.
25.Clyde Zhengdao Li, Vivian W.Y. Tam, Xulu Lai, Yijun Zhou*, Shan Guo.Carbon footprint accounting of prefabricated buildings: a circular economy perspective.Building and Environment.2024.
26.Clyde Zhengdao Li, Shu Wen*, Wen Yi, Hengqinh Wu, Vivian W.Y. Tam.Offsite Construction Supply Chain Challenges: An Integrated Overview.Journal of Construction Engineering and Management.2024.
27.Yue Teng, Clyde Zhengdao Li, Geoffrey Q.P. Shen, Qianwen Yang*, Zhe Peng.The impact of life cycle assessment database selection on embodied carbon estimation of buildings.Building and Environment.2023.
28.Clyde Zhengdao Li, Yu Zhen, Hengqin Wu*, Zhe Chen, Bing Xiao, Vivian W. Y. Tam.The Application of BIM in The AECO Industry.Journal of Civil Engineering and Management.2023.
29.Clyde Zhengdao Li, Zhenchao Guo, Dong Su, Bing Xiao*, Vivian W. Y. Tam.The Application of Advanced Information Technologies in Civil Infrastructure Construction and Maintenance.Sustainability.2022.
30.Clyde Zhengdao Li, Limei Zhang, Xin Liang, Bing Xiao*, Vivian W. Y. Tam, Xulu Lai, Zhe Chen.Advances in the research of building energy saving.Energy and Buildings.2022.
31.Clyde Zhengdao Li, Mingcong Hu, Bing Xiao*, Zhe Chen, Vivian W. Y. Tam , Yiyu Zhao.Mapping the Knowledge Domains of Emerging Advanced Technologies in the Management of Prefabricated Construction.Sustainability.2021.
深圳大学 土木与交通工程学院
中澳BIM与智慧建造联合研究中心/深圳大学建筑互联网与BIM实验中心
地址:广东省深圳市南山区深圳大学南区土木与交通工程学院2楼
邮编:518060 电话:0755-26535528
中心公众号